Ethnographic Arms & Armour
 

Go Back   Ethnographic Arms & Armour > Discussion Forums > Ethnographic Weapons
FAQ Calendar Today's Posts Search

Reply
 
Thread Tools Search this Thread Display Modes
Old 4th April 2006, 09:30 PM   #1
Jens Nordlunde
Member
 
Jens Nordlunde's Avatar
 
Join Date: Dec 2004
Location: Europe
Posts: 2,718
Default

I am rather puzzled. ‘Air’ bubbles, what is that, and how do you work your way around them? It is the first time I have ever heard about it.
The cracks are something interesting. I know of course that they appeared; most of the collectors know this, but why? One would think that when a blade is heated and worked on cracks would disappear, that the forging would make the blade more homogeneous, so why are the cracks still there?
Jens Nordlunde is offline   Reply With Quote
Old 4th April 2006, 10:37 PM   #2
Justin
Member
 
Justin's Avatar
 
Join Date: Dec 2004
Posts: 178
Default

Thanks,Jeff.
Justin is offline   Reply With Quote
Old 5th April 2006, 03:40 AM   #3
PUFF
Member
 
Join Date: Feb 2006
Location: 30 miles north of Bangkok, 20 miles south of Ayuthaya, Thailand
Posts: 224
Default

Unlike solid state smelting, the wootz smelting turn whole thing to liquid mixture. With slow cooling, liq. slag and liq. metal separated into two distintive phases like water and oil. Most of impurities partitioned into slag phase and floated up to the surface. I don't know about air bubble. Any bubble in the ingot indicates that smelting temperature 's too low and such a low smelting temp could trap some slag either.

Cracks are not "as baked" flaw. They happened when forging stress goes beyond the material elasticity (either forging temp 's too low or hammering 's too hard). Dear Jens, forging would make the blade more homogeneous as slag inclusions were forged out. But flaws like crack (or bubble) could not be closed unless you reach forge welding temperature (~1400 C). Unfortunately, wootz pattern melt down at 900-1000 C and forge welding of cracks or two ingots 's unlikely (possible but very difficult to bring the pattern black ).

Any flaw appear during forging stage can be easily work around by either trimming out or shortening the piece. IMO,As a smith, the worst flaw 's quench crack
PUFF is offline   Reply With Quote
Old 5th April 2006, 09:17 PM   #4
Jens Nordlunde
Member
 
Jens Nordlunde's Avatar
 
Join Date: Dec 2004
Location: Europe
Posts: 2,718
Default

Hi Puff, thank you for the explanation, I had an idea that it may be like you described, but I was not sure. Also I knew about the heat, but it is better to hear it one more time. Also there may still be some of the forumites who have not heard about this before.
So I suppose that the temperature of 900-100C is the cherry colour Hendley writes about.
Nice to have people like Greg, Jeff and you onboard, when it comes to the construction of our collectives.

Last edited by Jens Nordlunde; 5th April 2006 at 09:35 PM.
Jens Nordlunde is offline   Reply With Quote
Old 6th April 2006, 12:40 PM   #5
PUFF
Member
 
Join Date: Feb 2006
Location: 30 miles north of Bangkok, 20 miles south of Ayuthaya, Thailand
Posts: 224
Default

Quote:
Originally Posted by Jens Nordlunde
Hi Puff, thank you for the explanation, I had an idea that it may be like you described, but I was not sure. Also I knew about the heat, but it is better to hear it one more time. Also there may still be some of the forumites who have not heard about this before.
So I suppose that the temperature of 900-100C is the cherry colour Hendley writes about.
Nice to have people like Greg, Jeff and you onboard, when it comes to the construction of our collectives.
Just a minor correction, 900-1000 C going to be a yellowish cherry, a bit sour for my taste. Nice sweet & sour cherry red 's around 800 C.
PUFF is offline   Reply With Quote
Old 9th April 2006, 05:27 PM   #6
Jeff Pringle
Member
 
Jeff Pringle's Avatar
 
Join Date: Nov 2005
Posts: 189
Default

To add a bit to what Puff said, regarding bubbles:
I said 'air', but really it's carbon monoxide or oxygen, and they occur for a variety of reasons - undercooked ingots mostly (the melt has not reached equilibrium), but since liquid steel can hold more gasses in solution than solid steel, you can find porosity occuring during solidification too.
Regarding cracking, it can occur from working at too high or too low a temperature, or pushing the material too fast - the as-solidified grain stucture needs to be coaxed into a finer, more forgeable state. Impurities in the steel (oxygen, sulfur, phosphorus etc.) will precipitate out at grain boundaries during solidification, and can cause cracking too.
Forging temps for wootz are not high enough for cracks to get welded back together, so they don't go away. As Puff said, "Any flaw appear during forging stage can be easily work around by either trimming out or shortening the piece", and that's how those one-sword ingots get to be multiple-knife ingots.
I have some ingot slices that demonstrate most of the flaws you can run across, here's one ingot with some probable CO bubbles - cube is 1 cm for scale:

This ingot also suffered from too much intergranular oxygen and proved to be unworkable, after a lot of work!
Jeff Pringle is offline   Reply With Quote
Old 9th April 2006, 09:57 PM   #7
galvano
Member
 
galvano's Avatar
 
Join Date: Jan 2006
Posts: 178
Default ingots

Here two ingots.
One with bubbles.
One with cracks. galvano.
Attached Images
  
galvano is offline   Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT +1. The time now is 06:57 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2025, vBulletin Solutions Inc.
Posts are regarded as being copyrighted by their authors and the act of posting material is deemed to be a granting of an irrevocable nonexclusive license for display here.